
Some cases of the Lonely Runner conjecture

Introduction

For n points starting at one point and going at constant speed
around a circle, the conjecture asks whether there is always a time
when each point is arc distance at least C/n from the others, with
C the circumference. The conjecture is true in the special case when
two speeds are identical. Using convergence and ordinary Galilean
relativity (choice of coordinates) we may assume that any arbitrary
runner is stationary and the others have a set S of speeds, where S
is a set of strictly positive integers whose greatest common divisor is
equal to 1. The reason they may be taken positive is that positions
only matter at a discrete set of times when we check that the end-
point of one time interval is included in the next, and speeds only
matter modulo their least common multiple. If the conjecture can
be established for runner zero for all such sets S the conjecture will
be proven.

Theorem 6 below will prove the statement of the Lonely Runner
conjecture (for our arbitrarily chosen runner zero) for every possible
set of nonzero speeds S ⊂ {1, 2, 3, 4, 5, 6, ..., N} (assuming as we may
that the elements of S have highest common divisor 1 and that the
largest element of S is N), such that S has more than N/2 elements
but does not contain the subset {1, 2}.

The cases which we leave unexamined are when {1, 2} ⊂ S, when one
can restrict to the union of two large intervals of time ( 1

n
, 1
2
− 1

2n
) ∪

(1
2
+ 1

2n
, 1− 1

n
) when runners 1 and 2 are far from runner zero, and

the case when S has fewer than N+2
2

elements, when small intervals
of time when runner 0 is far from the others begin to proliferate.
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Interpretation as area.

Let the elements of S in order of size be b1, ..., bn−1, so the full set of
speeds including that of runner zero is {0, b1, b2, ..., bn−1}. On a real
(x, y) Cartesian plane where the horizontal axis describes speed and
the vertical axis describes arc distance divided by n, draw vertical
lines described by the equations x = b1, x = b2, ..., x = bn−1 and
imagine a line through the origin rotating counter-clockwise, so the
slope of the line represents time. The set of speeds {0, b1, ..., bn−1}
describes a counterexample just if the images of the open real inter-
vals from (ny− 1)/bi to (ny+1)/bi for integer values of y cover the
positive real timeline. This is true just if the top limit point of each
interval (we can choose top or bottom here) is contained in another
interval. That is, for all integers u and subscripts i there must be an
integer v and subscript j so that nv−1

bj
< nu+1

bi
< nv+1

bj
, equivalently

0 < det

(
nu+ 1 bj
nv + 1 bi

)
< 2bi.

The left side is det

(
1 bj
1 bi

)
+ n · det(

(
u bi
v bj

)
so the condition is

also equivalent to bj − bi < n · det
(
u bi
v bj

)
< bj + bi As long as

we choose bj > bi and choose u, v to make the determinant positive,
the equation says that

np < bi + bj (1)

Here we take for p the area, the same as the number of whole or
part integer lattice points in the paralellogram spanned by (u, bi)
and (v, bj), with a lattice point on an edge counting as half a lattice
point, and a lattice point on a corner calculated in proportion to
the subtended angle.
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A fundamental domain.

The picture is symmetrical with respect to the elementary transfor-
mation (x, y) 7→ (x, y + x).

We will call a point (bi, y) primitive if it is not a positive integer
multiple of a smaller similar point. Let’s label our primitive integer
points with slope between 0 and 1 as (B1, J1), ..., (BN , JN). Then
Bi ∈ {b1, b2, ..., bn−1} and we have

(B1, J1) = (b1, 0)
(B2, J2) = (bn−1, 1)

...
(BN , JN) = (b1, b1)

All except the last one, that is (B1, J1), ..., (BN−1, Jn−1), comprise
a list of all the primitive points of slope greater than or equal to
zero, but less than 1. There is, incidentally, a toric fan with edges
the rays where the first quadrant meets lines of slope zero and one
through the origin.
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Toric interpretation (optional).

We could apply a second elementary transformation (x, y) 7→ (x −
y, y) and we would find that this fan is reminiscent of the fan which
resolves a cyclic quotient singularity. The monomials here in the
dual lattice which are involved are those xiyj for i+j ∈ {b1, ..., bn−1}
and we have a proper birational map to the affine plane with ex-
ceptional rational curves corresponding to B1, ..., BN−1. The cones
of the fan are indexed by the rightmost primitive element of each
cone which is B1, B2, ..., BN−1 and so we see that there are N − 1
cones. The area of the basic paralellogram Ai = BiJi+1 − Bi+1Ji
for i = 1, 2, ..., N − 1 is also called the index of the cone, if we
were to construct the algebraic variety it would be the index of a
corresponding singular point.

The speeds {0, b1, ..., bn−1} are a lonely runner counterexample if
and only if

Ai <
Bi +Bi+1

n

for i = 1, 2, ..., N − 1.

Introduction of ϵ.

Let 0, b1, b2, ..., bn−1 with no common divisor larger than 1 with the
bi whole numbers such that 0 < b1 < b2... < bn−1. For each i when
we consider the consecutive points (Bi, Ji), (Bi+1, Ji+1) we have that

Ji+1 is the smallest integer strictly larger than Ji
Bi+1

Bi
. Define ϵi with

0 < ϵi ≤ 1 to be the difference

ϵi = Ji+1 − Ji
Bi+1

Bi

.

1. Lemma. The formula holds ϵi =
Ai

Bi
and consequently Then the

set of speeds {0, b1, ..., bn−1} fails the Lonely Runner condition for
runner zero if and only if for all i

Bi+1

Bi

> nϵi − 1.
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Proof. The first formula is the definition of Ai divided by Bi, the
second is the rewriting of the condition Ai <

1
n
(Bi+Bi+1) using the

first formula.

2. Remark. The product of the Bi+1

Bi
is equal to 1.

3. Remark. In the case (0, b1, b2, ..., bn−1) = (0, 1, 2, 3, 4, ..., n − 1)
all the inequalities hold except B2

B1
= nϵ1 − 1 holds as an equality

with B2 = n− 1, B1 = 1, ϵ1 = 1.

4. Corollary. Let {0, b0, ..., bn−1} be whole numbers such that
0 < b1 < ... < bn−1 and the bi have no common divisor higher than
1. The statement of the Lonely Runner conjecture is true (for runner
zero) for this set of speeds whenever bn−1 ≤ (n− 1)b1.

Proof. This the condition of Lemma 1 when i = 1. We have
(B1, J1) = (b1, 0) while (B2, J2) = (bn−1, 1). The value of ϵ1 is
1 − 0 = 1 so failure of the condition implies bn−1 > (n − 1)b1.

5. Corollary. Let {0, b0, ..., bn−1} be whole numbers such that
0 < b1 < ... < bn−1 and the bi have no common divisor higher than
1. Suppose not all bi are odd and let s be minimum such that bs
is even. The statement of the lonely runner conjectre is true (for
runner zero) for this set of speeds whenever bn−1 ≤ (n

2
− 1)bs.

Proof. Since s is minimal the point (bs,
bs
2
) is suitably primitive that

there is an i such that (Bi, Ji) = (bs,
bs
2
). Consider the consecutive

points (Bi, Ji) and (Bi+1, Ji+1). Let t be such that Bi+1 = bt. Then
Ji+1 is the smallest integer strictly greater than Ji

bt
bs

which evaluates

to bt
2
. Thus if bt is odd we have ϵi =

1
2
and if bt is even we have ϵi = 1.

When the lonely runner condition for runner zero fails, Lemma 1
implies Bi+1

Bi
= bt

bs
> nϵ− 1. with the right side being either n− 1 or

n
2
− 1. Then in any case bn−1

bs
≥ bt

bs
> n

2
− 1.
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6. Theorem. Let S ⊂ {1, 2, 3, 4, 5, 6, ..., N}, assuming as we may
that C = 1, that the highest common divisor of the elements of S
is 1 and the largest element of S is N. Suppose that S has more
than N/2 elements but does not contain the subset {1, 2}. Then the
statement of the Lonely Runner conjecture is true for the stationary
runner when the set of nonzero speeds is S.

Proof. We have the set of speeds {0, b1, ..., bn−1} such that 0 < b1 <
... < bn−1 with all bi whole numbers with no common divisor larger
than 1. We have bn−1 = N and the order of S is n − 1 ≥ N/2 + 1.
Then 2(n − 1) ≥ bn−1 + 2 so bn−1 ≤ 2n − 4. If b1 ̸= 1 then b1 ≥ 2
and Corollary 4 proves the statement for all bn−1 ≤ (n− 1)b1 which
is true if bn−1 ≤ (n− 1)2 = 2n− 2 which certainly holds as we have
bn−1 ≤ 2n− 4. Now assume on the other hand that b1 = 1. We are
in case b2 ̸= 2. It is not possible that all bi are odd, because that
would require bn−1 ≥ 2n − 1. Some of the bi must be even. Let s
be minimum so that bs is even. Then bs ≥ 4. Corollary 5 proves the
Lonely Runner statement for runner zero as long as bn−1 ≤ (n

2
−1)bs.

Then it is proven for all bn−1 ≤ (n
2
− 1) · 4 = 2n− 4 as required.
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Examples.

Let’s consider the ten-element subset S = {1, 3, 5, 7, 10, 11, 12, 13, 15, 16} ⊂
{1, 2, ..., 16} The number of elements is greater than or equal to 16+2

2
(it is greater, which is allowed), and S does not contain {1, 2}, so
the hypothesis is satisfied and the lonely runner statement is true
of runner zero. In this diagram slopes represent time, and lines
through the origin while passing through triangles of large area –
painted red– always hit a smaller interval of slope where runner zero
is lonely. Since 10 is the smallest even element of S the point (10, 5)
is a vertex of a red triangle
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Now we try instead S = {2, 3, 5, 7, 10, 11, 12, 13, 15, 16} ⊂ {1, 2, ..., 16}
This time 2 is included, but it is the smallest element of S and now
(1, 0) is a vertex of a red triangle.

anon5005
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